B1.2 PROTEINS

Guiding Questions

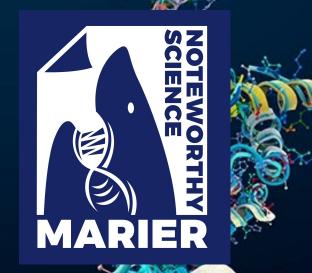
What is the relationship between amino acid sequence and the diversity in form and function of proteins?

How are protein molecules affected by their chemical and physical environments?

Linking Questions

How do abiotic factors influence the form of molecules?

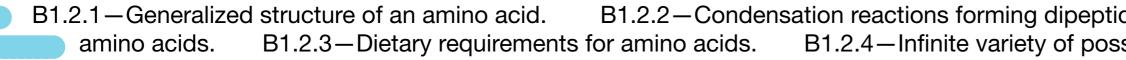
What is the relationship between the genome and the proteome of an organism?

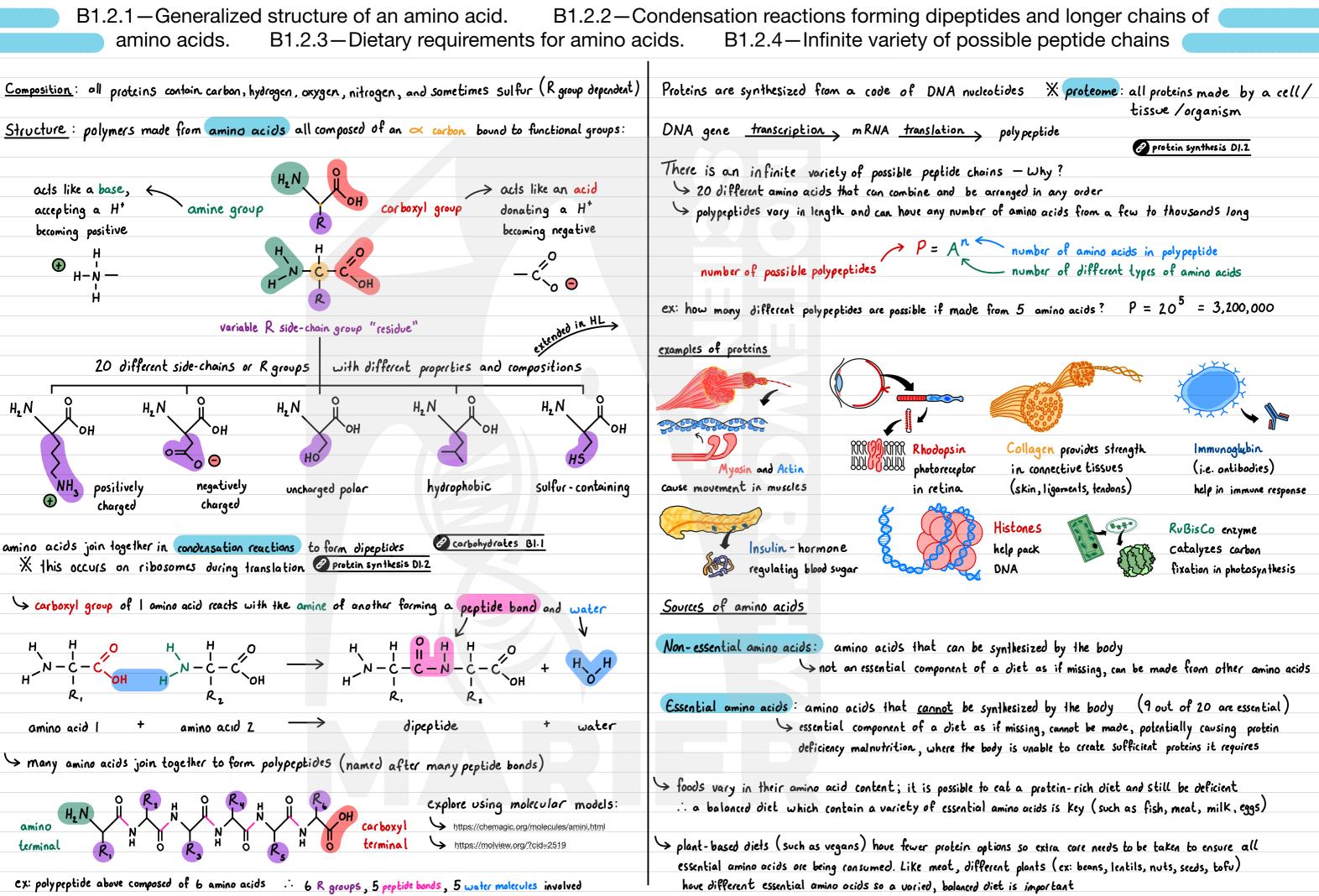

Written and drawn by:

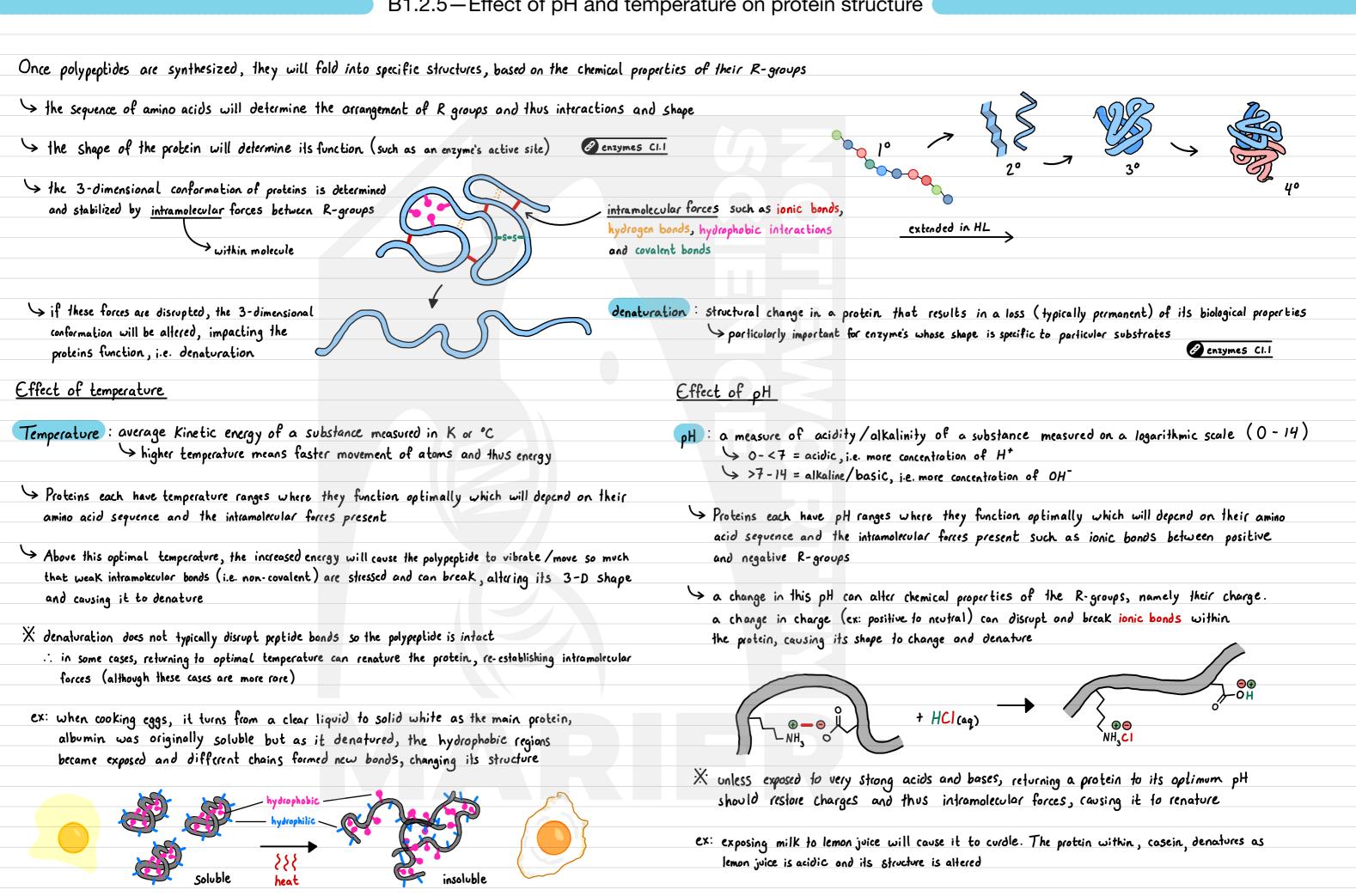
PETER MARIER

<u>Theme</u>: Form and Function <u>Level of Organization</u>: Molecules

ß

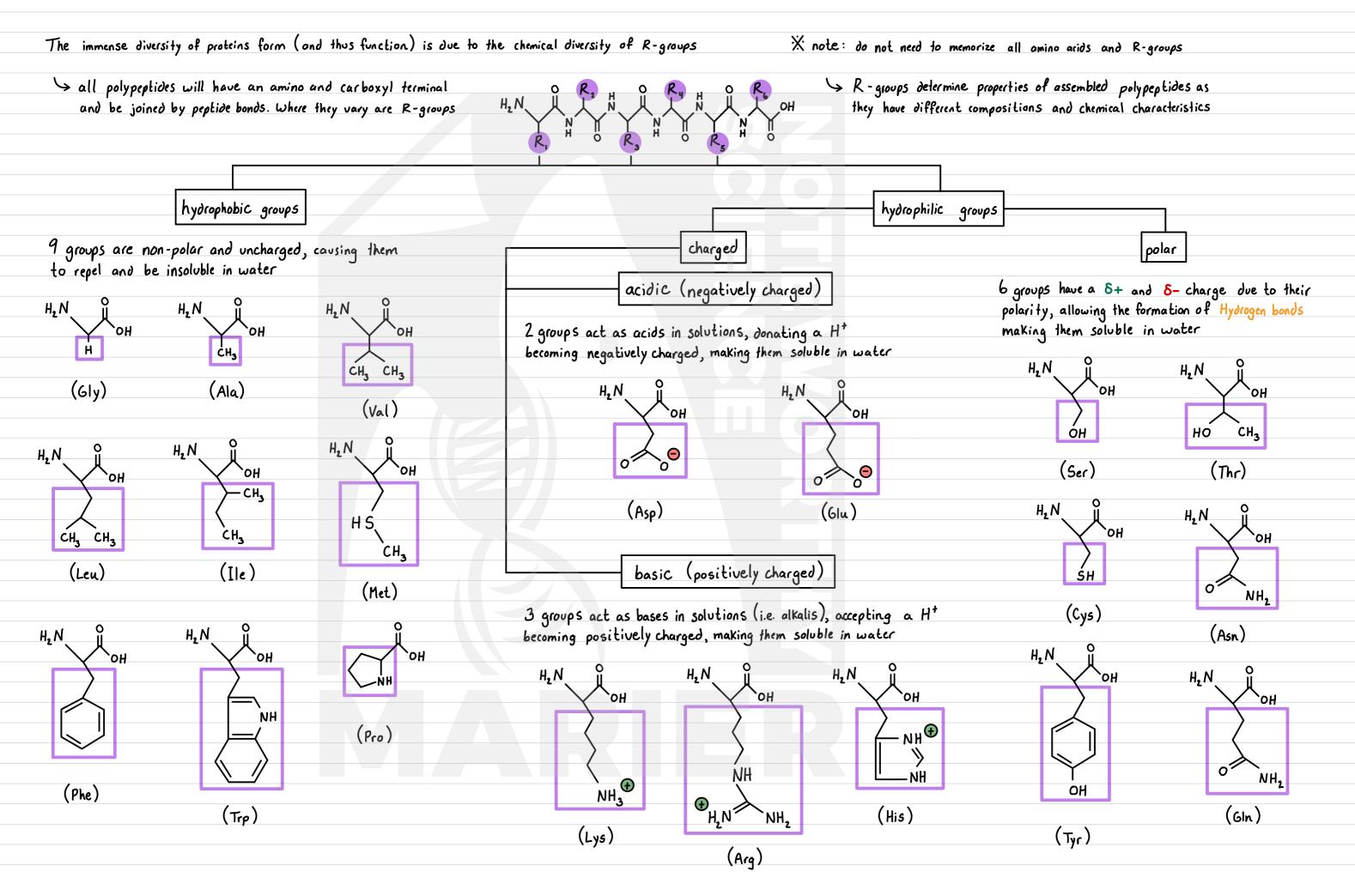


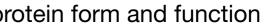

SL LEARNING OUTCOMES


B1.2.1	Generalized structure of an amino acid	Students should be able to draw a diagram of a generalized amino acid showing the alpha carbon atom with amine group, carboxyl group, R-group and hydrogen attached.
B1.2.2	Condensation reactions forming dipeptides and longer chains of amino acids	Students should be able to write the word equation for this reaction and draw a generalized dipeptide after modelling the reaction with molecular models.
B1.2.3	Dietary requirements for amino acids	Essential amino acids cannot be synthesized and must be obtained from food. Non-essential amino acids can be made from other amino acids. Students are not required to give examples of essential and nonessential amino acids. Vegan diets require attention to ensure essential amino acids are consumed.
B1.2.4	Infinite variety of possible peptide chains	Include the ideas that 20 amino acids are coded for in the genetic code, that peptide chains can have any number of amino acids, from a few to thousands, and that amino acids can be in any order. Students should be familiar with examples of polypeptides.
B1.2.5	Effect of pH and temperature on protein structure	Include the term "denaturation".

hl learning outcomes

B1.2.6	Chemical diversity in the R-groups of amino acids as a basis for the immense diversity in protein form and function	Students are not required to give specific examples of R-groups. However, students should understand that R-groups determine the properties of assembled polypeptides. Students should appreciate that R-groups are hydrophobic or hydrophilic and that hydrophilic R groups are polar or charged, acidic or basic.
B1.2.7	Impact of primary structure on the conformation of proteins	Students should understand that the sequence of amino acids and the precise position of each amino acid within a structure determines the three-dimensional shape of proteins. Proteins therefore have precise, predictable and repeatable structures, despite their complexity.
B1.2.8	Pleating and coiling of secondary structure of proteins	Include hydrogen bonding in regular positions to stabilize alpha helices and beta-pleated sheets.
B1.2.9	Dependence of tertiary structure on hydrogen bonds, ionic bonds, disulfide covalent bonds and hydrophobic interactions	Students are not required to name examples of amino acids that participate in these types of bonding, apart from pairs of cysteines forming disulfide bonds. Students should understand that amine and carboxyl groups in R-groups can become positively or negatively charged by binding or dissociation of hydrogen ions and that they can then participate in ionic bonding.
B1.2.10	Effect of polar and non-polar amino acids on tertiary structure of proteins	In proteins that are soluble in water, hydrophobic amino acids are clustered in the core of globular proteins. Integral proteins have regions with hydrophobic amino acids, helping them to embed in membranes.
B1.2.11	Quaternary structure of non-conjugated and conjugated proteins	Include insulin and collagen as examples of non-conjugated proteins and haemoglobin as an example of a conjugated protein. NOS: Technology allows imaging of structures that would be impossible to observe with the unaided senses. For example, cryogenic electron microscopy has allowed imaging of single-protein molecules and their interactions with other molecules.
B1.2.12	Relationship of form and function in globular and fibrous proteins	Students should know the difference in shape between globular and fibrous proteins and understand that their shapes make them suitable for specific functions. Use insulin and collagen to exemplify how form and function are related.



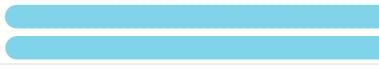


B1.2.6—Chemical diversity in the R-groups of amino acids as a basis for the immense diversity in protein form and function

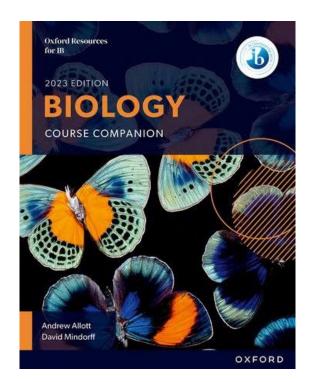
HL

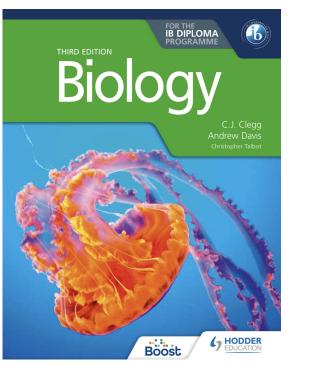
B1.2.7—Impact of primary structure on the conformation of proteins. B1.2.8—Pleating and coiling of secondary structure of proteins. B1.2.9—Dependence of tertiary structure on hydrogen bonds, ionic bonds, disulfide covalent bonds and hydrophobic interactions. B1.2.10—Effect of polar and non-polar amino acids on tertiary structure of proteins.

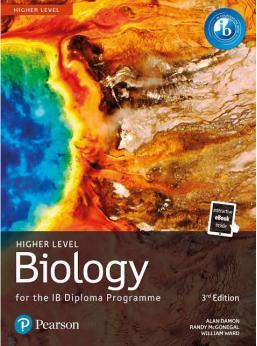
HL


by peptide bonds	nino acids in a polypeptide linked together	Tertiary protein structure : overall 3-dimensional interactions/bonds betw
> the primary structure is a repeating sequence of	$\begin{array}{ccc} R & \circ & H & R & \circ \\ R & \circ & H & R & \circ \\ -C & -C & -N & -C & -C & -) \\ \vdots & \vdots & \vdots \\ \end{array}$	polypeptide 5
Solution State	HR HR C N C C C N C N C C C N C C C C C C C C C C C C C	NH3-0 ionic bond
free a DNA gene provides the instructions for a polyper amino acids), composition (which amino acids, i.e. R- acids in the chain) giving proteins a precise, predicta	tide sequence including its length (how many groups) and placement (the order of amino	forms between ionized R-groups, i.e. positive (basic) NH ⁺ and negative (acidic) COO ⁻ R-groups
.: DNA dictates the primary structure which dictates t		hydrophobic interaction non-polar R-groups will
Secondary protein structure : pleating and coiling on beta - pleated sheets due	f a polypeptide into alpha-helices and to hydrogen bonding between carboxyls and amines	non-polar K-groups will interact with each other, coming into close proximity with each other
Swithin polypeptides there are repeating N-H and	C=0 groups R O H R O H (-C-C-N-C-C-N-) H H	(on the interior of the protein to avoid water)
these groups are polar due δ+ δ- to uneven sharing of electrons -N-H····Ο=		relatively weak interaction.
	with each other, stabilizing the structure	As some R-groups are polar (hydrophilic) and non-j polypeptide will impact the structure, properties, and
S these interactions cause the polypeptide to fold into d)ifferent shapes	> Integral proteins (imbedded in the plasma membrane)
alpha-helix beta-pla	eated sheet	
helix with hydrogen bonds between cithe	o or more sections of the polypeptide arranged er in parallel (same direction) or antiparallel osite directions) with hydrogen bonds between them	polar non- polar polar
$\begin{array}{c} H_{-N} & c_{-} \\ c_{-} $		Proteins have hydrophilic regions channel proteins have facing the inside / outside hydrophilic regions in
		of cell, allowing interactions tunnel/pore, allowing with water while the core hydrophilic substances is hydrophobic, allowing it to (ions, polar molecules) t

B1.2.11—Quaternary structure of non-conjugated and conjugated proteins. B1.2.12—Relationship of form and function in globular and fibrous proteins


HL


	1			
Quaternary protein structure: protein complex composed of 2 or more polypeptides	<u>NOS</u> : Technology allows imaging of structures that would be impossible @cell structure A2.2 to observe with unaided senses			
Sconjugated proteins composed of both protein and non-protein prosthetic group(s)				
Such as carbohydrates, lipids, metal ions, and other organic groups		> haemoglobin has a diameter of ~5nm, too small to be observed clearly even by most microscopes		
ex: <u>Haemoglobin</u> - quaternary protein made of 4 subunits.		ex: cryogenic electron microscopy (cryo EM) \blacksquare		
each red blood cell contains ~ 260 million haemaelabin malecules each red blood cell contains ~ 260 million baemaelabin malecules	scatter lens, p	on beams are fired at a frozen protein solution, ring them. Scattered electrons focused through a producing a magnified image on a detector the structure can be worked out	processed image	
contains ~260 million haemoglobin molecules polypeptide folded into many helices and each globin is bound to a haem prosthetic group			electron detector lens	
	to incr	redible resolution (0.12nm)		
→ function: the haem group contains an Fe ²⁺		ng atom positions to be seen electron be	am frozen protein sample	
which binds reversibly to Oz, H2C CH3				
allowing to collect Oz in the Hack Hack O	> freezin	ng technique allows conformational changes to be	seen as protein carries out task, allowing	
lungs and deliver it to cells	Freezing technique allows conformational changes to be seen as protein carries out task, allowing not just form but function to be determined as well as interactions with other molecules			
around the body				
H ₂ C N N H	X: the fu	nction of a protein depends on its form/stru	cture, j.e. "form follows function"	
> Non-conjugated protein: composed of proteins only CH3 CH3		Fibrous proteins	Globular proteins	
ex: Insulin - quaternary protein made of 2 polypeptides (A chain and B chain)			round/spherical, typically composed of	
ex: Insulin - quaternary protein made of 2 polypeptides (A chain and B chain)	structure	Fibrous proteins long and narrow, typically composed of repeating amino acid sequences		
ex: Insulin - quaternary protein made of 2 polypeptides (A chain and B chain)		long and narrow, typically composed of repeating amino acid sequences	round/spherical, typically composed of variable, irregular amino acid sequences	
ex: <u>Insulin</u> - quaternary protein made of 2 polypeptides (A chain and B chain) After initial synthesis (translation) it is a single polypeptide where it is then modified: splitting it into two chains linked by covalent disulfide bridges	structure properties		round/spherical, typically composed of	
ex: <u>Insulin</u> - quaternary protein made of 2 polypeptides (A chain and B chain)		long and narrow, typically composed of repeating amino acid sequences generally insoluble in water	round/spherical, typically composed of variable, irregular amino acid sequences	
ex: <u>Insulin</u> - quaternary protein made of 2 polypeptides (A chain and B chain)	properties	long and narrow, typically composed of repeating amino acid sequences generally insoluble in water stable in a large range of conditions	round/spherical, typically composed of variable, irregular amino acid sequences generally soluble in water sensitive to temperature and pH changes	
ex: <u>Insulin</u> - quaternary protein made of 2 polypeptides (A chain and B chain)	properties function	long and narrow, typically composed of repeating amino acid sequences generally insoluble in water stable in a large range of conditions structural role (strength and support) Keratin, myosin, actin, fibrin, elastin	round/spherical, typically composed of variable, irregular amino acid sequences generally soluble in water sensitive to temperature and pH changes physiological /functional/specialized role	
ex: <u>Insulin</u> - quaternary protein made of 2 polypeptides (A chain and B chain)	properties function examples	long and narrow, typically composed of repeating amino acid sequences generally insoluble in water stable in a large range of conditions Structural role (strength and support) Keratin, myosin, actin, fibrin, elastin Collagen is a triple helix, each strand composed of repeating 3 amino acids, giving	round/spherical, typically composed of variable, irregular amino acid sequences generally soluble in water sensitive to temperature and pH changes physiological / functional / specialized role haemoglobin, enzymes, immunoglobin Insulin is a small, globular protein, allowing it to quickly move through blood. Its specific	
ex: Insulin - quaternary protein made of 2 polypeptides (A chain and B chain) after initial synthesis (translation) it is a single polypeptide where it is then modified: splitting it into two chains linked by covalent disulfide bridges synthesized and secreted by pancreas ex: <u>Collagen</u> - quaternary protein made of 3 left-handed helices wound fogether into a right-handed triple helix. These associate in groups to form strong, elastic fibres	properties function examples Key example	long and narrow, typically composed of repeating amino acid sequences generally insoluble in water stable in a large range of conditions Structural role (strength and support) Keratin, myosin, actin, fibrin, elastin Collagen is a triple helix, each strand composed of repeating 3 amino acids, giving it a regular and geometric fibrous shape → bonds hold helices	round/spherical, typically composed of variable, irregular amino acid sequences generally soluble in water sensitive to temperature and pH changes physiological / functional / specialized role haemoglobin, enzymes, immunoglobin Insulin is a small, globular protein, allowing it to quickly move through blood. Its specific shape allows it to bind to an insulin receptor complementarily, initiating a cellular response	
ex: Insulin - quaternary protein made of 2 polypeptides (A chain and B chain) after initial synthesis (translation) it is a single polypeptide where it is then modified: splitting it into two chains linked by covalent disulfide bridges synthesized and secreted by pancreas ex: <u>Collagen</u> - quaternary protein made of 3 left-handed helices wound fogether into a right-handed triple helix. These associate in groups to form strong, elastic fibres	properties function examples Key example	long and narrow, typically composed of repeating amino acid sequences generally insoluble in water stable in a large range of conditions Structural role (strength and support) Keratin, myosin, actin, fibrin, elastin Collagen is a triple helix, each strand composed of repeating 3 amino acids, giving it a regular and geometric fibrous shape → bonds hold helices	round/spherical, typically composed of variable, irregular amino acid sequences generally soluble in water sensitive to temperature and pH changes physiological / functional / specialized role haemoglobin, enzymes, immunoglobin Insulin is a small, globular protein, allowing it to quickly move through blood. Its specific shape allows it to bind to an insulin receptor complementarily, initiating a cellular response	
ex: Insulin - quaternary protein made of 2 polypeptides (A chain and B chain) after initial synthesis (translation) it is a single polypeptide where it is then modified: splitting it into two chains linked by covalent disulfide bridges synthesized and secreted by pancreas ex: Collagen - quaternary protein made of 3 left-handed helices wound fogether into a right-handed triple helix. These associate in groups to form strong, elastic fibres fibre	properties function examples Key example	long and narrow, typically composed of repeating amino acid sequences generally insoluble in water stable in a large range of conditions Structural role (strength and support) Keratin, myosin, actin, fibrin, elastin Collagen is a triple helix, each strand composed of repeating 3 amino acids, giving it a regular and geometric fibrous shape → bonds hold helices	round/spherical, typically composed of variable, irregular amino acid sequences generally soluble in water sensitive to temperature and pH changes physiological / functional / specialized role haemoglobin, enzymes, immunoglobin Insulin is a small, globular protein, allowing it to quickly move through blood. Its specific shape allows it to bind to an insulin receptor complementarily, initiating a cellular response	
ex: Insulin - quaternary protein made of 2 polypeptides (A chain and B chain) after initial synthesis (translation) it is a single polypeptide where it is then modified: splitting it into two chains linked by covalent disulfide bridges synthesized and secreted by panereas ex: Collagen - quaternary protein made of 3 left-handed helices wound together into a right-handed triple helix. These associate in groups to form strong, elastic fibres	properties function examples Key example	long and narrow, typically composed of repeating amino acid sequences generally insoluble in water stable in a large range of conditions Structural role (strength and support) Keratin, myosin, actin, fibrin, elastin Collagen is a triple helix, each strand composed of repeating 3 amino acids, giving it a regular and geometric fibrous shape → bonds hold helices	round/spherical, typically composed of variable, irregular amino acid sequences generally soluble in water sensitive to temperature and pH changes physiological / functional / specialized role haemoglobin, enzymes, immunoglobin Insulin is a small, globular protein, allowing it to quickly move through blood. Its specific shape allows it to bind to an insulin receptor complementarily, initiating a cellular response The specific structure	



BIBLIOGRAPH4

