11.1 Formulae, functional groups and term I can:	minology
	with the same molecular formula, but different structural and $CH_3CH(CH_3)CH_3$ and C_4H_8 as $CH_3CH_2CH=CH_2$ and $CH_3CH=CHCH_3$
44.2 November 2000	
11.2 Naming organic compounds I can:	_
1. Name and draw the displayed formulae	of:
	sections 11.4–11.7 (i.e. Carboxylic acids, Alcohols, Alkenes, and
Alkanes).	tections 11.4 11.7 (i.e. carboxylic acids, Alcohols, Alkeries, and
	_
11.4 Alkanes	11.5 Alkenes
	Describe the reasons for the cracking of larger
3 State that in a substitution reaction one atom or group of atoms is replaced by another atom or	alkane molecules
group of atoms	4 Describe the test to distinguish between
4 Describe the substitution reaction of alkanes	saturated and unsaturated hydrocarbons by their reaction with aqueous bromine
with chlorine as a photochemical reaction, with ultraviolet light providing the activation energy,	5 State that in an addition reaction only one
E_a , and draw the structural or displayed formulae	
of the products, limited to monosubstitution	6 Describe the properties of alkenes in terms of addition reactions with:
	(a) bromine or aqueous bromine
	(b) hydrogen in the presence of a nickel catalyst
	(c) steam in the presence of an acid catalyst
	and draw the structural or displayed formulae of the products
	<u>'</u>
11.6 Alcohols	11.7 Carboxylic acids
1 Describe the manufacture of ethanol by:	1 Describe the reaction of ethanoic acid with:
(a) fermentation of aqueous glucose at 25–35 °C	(a) metals
in the presence of yeast and in the absence of oxygen	(b) bases (c) carbonates
(b) catalytic addition of steam to ethene	including names and formulae of the salts
at 300 °C and 6000 kPa / 60 atm in the	produced
presence of an acid catalyst	Describe the formation of ethanoic acid by the
	oxidation of ethanol: (a) with acidified aqueous potassium
	manganate(VII)
	(b) by bacterial oxidation during vinegar production
	Production.

Structural Isomers

Structural isomer: compounds with the same molecular formula but different structural formula

> alkanes

 $C_{4}H_{10}$

2-methylpropane

$$C_{4}H_{10}$$

> alkenes

but-2-ene

2-methylprop-1-ene

$$CH_3C=(CH_2)CH_3$$

> alcohols

$$C_{q}H_{q}OH$$

$$C_{u}H_{q}OH$$

> carboxylic acids

Reactions involving alkanes and alkenes

substitution reaction: reaction where one atom or group of atoms is replaced by another atom or group of atoms

- > alkanes undergo a substitution reaction with chlorine to produce chloroalkanes and hydrogen chloride. Reaction requires ultraviolet light to provide the necessary activation energy (Ea)
- * photochemical reaction · reactions that are initiated when light energy is absorbed by reactants

ex:
$$H-C-C-H+CI-CI$$
 light $H-C-C-CI+H-CI$

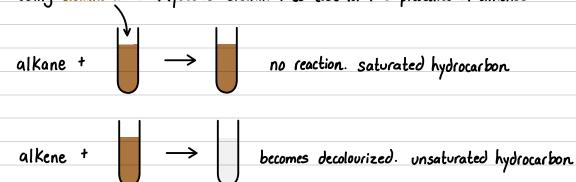
ethane chlorine chloro ethane hydrogen chloride

Cracking: process of breaking long hydrocarbons into smaller, simpler molecules typically requires the addition of heat or a catalyst

USES: shorter alkanes can be used as fuels

alkenes can be used to produce polyethylene i.e. plastic

Addition reaction: reaction where two or more molecules combine to form one product


alkene reactions with bromine

ex:
$$C = C$$
 + $Br - Br$ H-C-C-H

Br Br

ethene bromine dibromoethane

* saturation test: using bromine water (aqueous bromine) to test for the prescence of alkenes

Reactions involving alkenes

> alkene reactions with hydrogen

hydrogenation: reaction between alkene and hydrogen in the prescence of a catalyst (ex: nickle) and high temperatures (ex: 200°C)

ex:
$$C = C$$
 + $H - H$ H $H + C - C - H$

ethene hydrogen ethane

Substance which increases rate of reaction without undergoing permanent change by lowering activation energy

* partial hydrogenation of unsaturated fats (found in oils) leads to trans fats which raise melting point causing them to be solid at room temperature ex: margarine

> alkene reactions with water (steam)

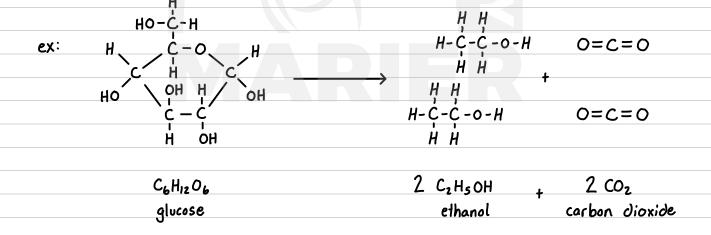
hydration: reaction where substance combines with water.

when alkenes are heated (300°C) in presence of steam (water), an acid catalyst, and high pressure (60 atm), an addition reaction occurs: breaking the double bond and water, forming an alcohol

ex:
$$C = C$$
 + H H H H^{\dagger} H $C - C - H$

ethene water ethanol

Reactions involving alcohols


> oxidation of alcohol into carboxylic acid

bacterial oxidation reaction with oxygen by bacteria such as Acetobacter forming a carboxylic acid

Oxidation with catalyst alcohol can be oxidized in the presence of a strong oxidizing agent such as acidified potassium manganate (VII) solution

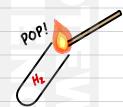
> alcohol production by fermentation

alcohol fermentation: metabolic process where sugar, such as glucose is converted to alcohol and carbon dioxide. Occurs in yeast, plants, and bacteria

uses: production of alcoholic beverages

baking of bread

production of biofuel



Reactions involving carboxylic acids

> carboxylic acid reactions with metals

generally: acid + metal -> salt + hydrogen gas

* hydrogen test: the presence of hydrogen gas can be tested by exposing a gas to a burning splint if Hz is present a 'POP' sound will occur

> carboxylic acid reactions with bases

generally: acid + base -> salt + water

ex:
$$H-C-C-O-H$$
 + $Na-O-H$ \longrightarrow $H-C-C-O-Na$ + H $\stackrel{H}{\longrightarrow}$ \stackrel{H}

> carboxylic acid reactions with carbonates

generally: acid + metal carbonate -> salt + water + carbon dioxide

· • • • • • • • • • • • • • • • • • • •	iac is the minimum	number of carbons for	Structural isome	rs for the following (explain your answer?
a) alk	anes				
b) alk	enes				
c) alco					
d) carb	oxylic acids				
2 H	OW many structure	al isomers exist for	alkanes of 5,6	, 7, 8, 9 carbons?	ls there a pattern?
3 Co	omplete the following	g chemical reactions	by providing the	e word and balanced	chemical equations.
example	CzH6	+ Cl ₂	light	C ₂ H ₅ CI	+ HCI
•	ethane	chlorine		chloroethane	hydrogen chloride
a)			light		
	methane	+ chlorine			
b)			light	C3H7CI	HCI
				3 7	7
c)					
()			\longrightarrow	dibromobutane	
9)	C3H6	+ Br ₂	\rightarrow		
e)	_		Ni _		
	but-1-ene	hydrogen			
C			- A1.		
f)		+ H ₂	-Ni	C3H8	
. 1			H ⁺ _		
g)				propan - 1 - ol	
				P. Spano	
h)		+	<u> ++</u> >		
	but-2-ene	water	-		
i)				C ₂ H ₅ COOH	+ H ₂ O
			\longrightarrow	21.15	T ''Z ''
· ` `					

pentan-1-ol

oxygen

3 Cont.

K) HCOOH + Na ->

butanoic acid Calcium

 $\longrightarrow C_{4}H_{2}COOK + H_{2}O$

n)
methanoic acid sodium hydroxide

o)

potassium propanoate water carbon dioxide

p) C4 H9 COOH + CaCO3 _____

- Describe the difference between a substitution and addition reaction. Include examples
- In a chemical reaction, a catalyst can be used. A student describes a catalyst as a substance added to increase energy and thus increase rate of reaction. Explain, whether they are correct or not.