5.1 Exothermic and endothermic reactions

I can:

- □ 1. State that an exothermic reaction transfers thermal energy to the surroundings leading to an increase in the temperature of the surroundings
- 2. State that an endothermic reaction takes in thermal energy from the surroundings leading to a decrease in the temperature of the surroundings
- 3. Interpret reaction pathway diagrams showing exothermic and endothermic reactions
- 4. State that the transfer of thermal energy during a reaction is called the enthalpy change, ΔH, of the
 reaction. ΔH is negative for exothermic reactions and positive for endothermic reactions
- **D** 5. Define activation energy, Ea, as the minimum energy that colliding particles must have to react
- 6. Draw and label reaction pathway diagrams for exothermic and endothermic reactions using information provided, to include:
 - (a) reactants
 - (b) products
- (c) enthalpy change of the reaction, ΔH
- (d) activation energy, Ea
- 7. State that bond breaking is an endothermic process and bond making is an exothermic process and explain the enthalpy change of a reaction in terms of bond breaking and bond making
- □ 8. Calculate the enthalpy change of a reaction using bond energies

Bond energy : average bond - dissociation energy for a bond type in a particular molecule i.e. a measure of bond strength. samount of energy absorbed when bond is broken / energy released when bond is formed > measured in KJ mol-"

By calculating overall bond energy associated with reactants and products in a chemical reaction we can determine whether reaction is endothermic or exothermic

Example problem propanoic acid undergoes complete combustion.	Type of bond	Average energy (kJ/mol)
a) provide balanced chemical equation	Н—Н	432
b) a la la la dia a la cara la dia analy	C—C	347
D) calculate the enthalpy change for the reaction	C=C	614
C) determine whether reaction is endothermic or exothermic	C≡C	839
d) draw the reaction pathway diagram for this reaction	С—Н	413
	С—О	358
<u>Step 1</u> write balanced chemical equation	C=0	745
	О—Н	467
$2 C_{1H_{2}}COOH + 70_{2} \longrightarrow 6 CO_{2} + 6 H_{1}O$	$0=0$ (in O_2)	498

Step 2 draw the structural formulas

<u>Step 3</u>	determine	how	many of	each f	bond	type	for	reactonts	ond	products
•	and mult	:iply	by given	bond	energie	:5				

<u>reactants</u>	4 × c=c	(347)	2 × C-0	(358)	products	12 × C=0 ((745)
	10 × C=H	(413)	2 × 0-H	(467)		12 × 0=H ((467)
	2 × C=0	(745)	7 × 0=0	(498)			

```
Ereactants = 12144 KJ mol<sup>-1</sup>
```

Eproducts = 14544 KJ mol⁻¹

Step 4 calculate ΔH and determine reaction type	<u>Step 5</u> Draw reaction pathway diagram	
$\Delta H = H$ reactants - H products	$\frac{1}{1} \frac{2 C_2 H_5 COOH + 7 O_2}{1}$	
= 12144 KJ mol ⁻ ' - 14544 KJ mol ⁻ ' = -2400 KJ mol ⁻¹	تو 2400 KJ mol ⁻¹	
$-\Delta H$ \therefore exothermic	6 CO ₂ + 6 H ₂ O	

reaction progress

Practice problems

For each of the following molecules:	Type of bond	Average energy (kJ/mol)
-	Н—Н	432
a) provide balanced chemical equation for its complete combustion	C—C	347
b) calculate the esthalou chance for its complete compustion.	C=C	614
a) delegation whether the so-called south schien to callethere is a dethermine of anothere is	C≡C	839
C) determine whether its complete composition is endotremic or expiremic	С—Н	413
0) draw the reaction pathway diagram for its complete combustion	С—О	358
	C=0	745
) butane	О—Н	467
	$0=0$ (in O_2)	498
) oct-1-ene		
) penton -3- ol		
pricate of ot		
rexandic acio		
	<u> </u>	
	_	

Answers -	
$(1) 2C_{y}H_{10} + 13O_{2} \longrightarrow 8CO_{z} + 10H_{z}$	20
$ 2 \left(\begin{array}{c} H & H & H & H \\ H - C - C - C - C - H \\ H & H & H \end{array} \right) + 13 (0 = 0) \longrightarrow $	$8 \left(O = C = O \right) + 10 \left(H^{\circ} H \right)$
<u>reactants</u> 6 × C-C (347) 20 × C-H (413) 13 × O=O (498)	<u>products</u> 16 x C=0 (745) 20 x O-H (467)
Ereactants = 16816 KJ mol ⁻¹	Eproducts = 21260 KJ mol ⁻¹
$AH = H_{contracts} = H_{conducts}$	$2 C_{\rm e} H_{\rm e} + 13 O_{\rm e}$
$= 16816 \text{ KT mal}^{-1} = 21260 \text{ KT mal}^{-1}$	
= - 4444 KJ mol ⁻¹	- 4444 KJ mol-1
-∆H ∴ exothermic	8 CO ₂ + 10 H ₂ O
	cenction progress
	Tucción progress
(1) $C_8H_{16} + 12O_2 \longrightarrow 8CO_2 + 8H_2O$	
ң ңңңңңң С=С-С-С-С-С-С-Н + I2(О=О) — ННННННН	$\rightarrow 8(0=c=0) + 8(H^{\circ}H)$
$excharge (1, C - C (2)) = 12 \times 0 = 0 (498)$) appliets $16 \times (-0) (745)$
$\frac{1}{16} \times C = H (H12)$	$16 \times 0 - 4 (413)$
$1 \times C = C (614)$	
Ereactants = 15280 KJ mol ⁻¹	Eproducts = 19392 KJ mol ⁻¹
AH - Handrate - Handrate	$C_{a}H_{ii} + 120$
$= 15280 VT = 1^{-1} = 10200 VT = 1^{-1}$	
= 15200 KJ mol = 17572 KJ mol	
= - 7112 KJ mol	
$-\Delta H$ \therefore exothermic	8CO2 + 8 H2O
	reaction progress

Anguers		
$ (3) 2C_{5}H_{11}OH + 15O_{2} \longrightarrow 10CO_{2} + 12H_{2} $)	
$ \begin{array}{cccc} \begin{pmatrix} H & H & H & H & H \\ H & -C & -C & -C & -C & -H \\ H & H & O & H & H \end{pmatrix} + 15(O=O) \longrightarrow \\ \begin{array}{c} H & H & O & H & H \end{array} $	$IO(O=C=O) + IZ(H^{O}H)$	
<u>reactants</u> 8 × C-C (347) 2 × C-O (358) 22 × C-H (413) 15 × O=O (498)	<u>products</u> 20 × C=0 (743 24 × O-H (463	5) F)
2 × 0-H (467)		
Ereactants = 20982 KJ mol ⁻¹	E products = 26108 KJ mol ⁻¹	
$\Delta H = H$ reactants - H products	2 C3H110H + 15 02	
= 20982 KJ mol ^{-1'} - 26108 KJ mol ⁻¹		
= - 5126 KJ mol ⁻¹	- 5126 KJ mol-1	
- △H ∴ exothermic	10 CO ₂ + 12 H ₂ O	
	reaction progress	
$(4) C_{g}H_{H}COOH + 8O_{2} \longrightarrow 6CO_{2} + 6H_{2}$	0	
ӉӉӉӉҀ H-Ç-Ç-Ç-Ç-С-0-H + 8(0=0) — Н Н Н Н Н	$\rightarrow 6(0=c=0) + 6(H)$	+)
<u>reactants</u> 5 × C-C (347) 1 × C-O (358 11 × C-H (413) 1 × O-H (467) <u>products</u> 12 × C=O (745)) 12 × O-H (467))
1 × C=O (745) 8 × O=O (498)	
Ereactants = 11832 KJ mol ⁻¹	Eproducts = 14544 KJ mol ⁻¹	
$\Delta H = H_{reactants} - H_{products}$	$C_{s}H_{II}COOH + 8O_{2}$	
= 11832 KJ mol ⁻¹ - 14544 KJ mol ⁻¹		
= -2712 KJ mol ⁻¹	-2712 KJ mol ⁻¹	
$-\Delta H$ \therefore exothermic	6 CO ₂ + 6 H ₂ O	
	reaction progress	
	1 5	